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Local Verifications in Distributed Data Structures

Yitong Yin∗

Abstract

We study distributed data structures, in which the results of queries to the data structure
can be verified locally in a distributed network. We consider locally checkable data structures,
which are the cell-probe schemes in which the results of queries can be checked locally. We
introduce cell-probe proofs (CPP), an interactive proof system for cell-probe model, and discuss
the connection between CPP and locality in data structures. We present a combinatorial char-
acterization of CPP. With these novel tools, we prove two lower bounds for the locally checkable
data structures:

• There do not exist locally checkable data structures for the exact nearest neighbor search
(NNS) problem or the partial match problem in high dimensional Hamming space, under
the assumption that there are Poly(n) nodes, each of which contains no(1) bits, and each
node has at most no(1) local nodes, where n is the number of points in the data set for
NNS or partial match problem.

• For any locally checkable data structure for the polynomial evaluation problem, where the
data structure stores a polynomial and each query is the input to the polynomial and the
result to the query is the corresponding outcome, either the total storage of local nodes is
close to the size of the whole polynomial, or the total storage size of the data structure is
close to the naive upper bound that stores results for all possible queries.
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1 Introduction

A fundamental concern for distributed systems is locality. The theory of local computations started
over a decade ago by [17, 20] laid a ground work for understanding the question of how locality
may affect the computational power of a distributed system. Previous works in local computations
[10,16–18,20] study the question of what kind of labeling of graphs can be computed based on local
information only. Motivated by the exciting progress in the practice of distributed data structures
in recent years (e.g. [2, 21, 22, 24]), we alternatively study the impact of locality on the power of
data structures. This paper initiates the studies to the phenomenon of local verifications in data
structures, and presents the first lower bounds for the data structures with the property of local
verifiability.

Given a set Y of data instances, and a set X of possible queries, a data structure problem can
be abstractly defined as a function f mapping from every pair of query x ∈ X and data instance
y ∈ Y to an answer. The following are some examples.

Exact nearest neighbor search (NNS): given a metric space U , let X = U and Y =
(U
n

)
,

and for every x ∈ X and y ∈ Y , f(x, y) is defined as the closest point to x in y according to
the metric.

Partial match: X = {0, 1, ∗}d, Y =
({0,1}d

n

)
, and f(x, y) ∈ {0, 1} that for every x ∈ X and

y ∈ Y , f(x, y) = 1 if and only if there exists z ∈ y, either xi = zi or xi = ∗ for every i.

Polynomial evaluation: X = 2k is a finite field, Y = 2kd is the set of all (d − 1)-degree
polynomials over the finite field 2k, and f(x, y) returns the value of y(x).

A classic computational model for data structures is cell-probe model [23]. For each data
instance y, a table of cells is constructed to store y. Upon a query x, an all-powerful algorithm
tries to answer to a data structure problem f(x, y), based on adaptive random access (probes) to
the cells.

For distributed data structures, each cell corresponds to a node in the distributed system. For
each data instance y, an underlying network connecting the nodes is constructed, so that each node
has a set of local nodes in the current network, which we call it the neighborhood of the node.
Intuitively, the neighborhood of a node contains the nodes that it may quickly access. For different
systems, the definition of neighborhoods may vary: the neighborhood of a node u may contain the
nodes adjacent to u, or the nodes within distance ` from u for some threshold `. In any case, we
parameterize the system by the maximum size of neighborhoods, denoted as δ, which characterizes
the degree of locality.

We consider data structures that satisfy the following requirement of locality: for every data
instance y, a structure of neighborhoods is imposed on cells as described above, such that for every
query x to data y, the value of the answer f(x, y) can be decided within some neighborhood. We call
the data structure with such property as a locally checkable data structure. The performance
of such data structures is measured by the number of cells, the number of bits in each cell, and the
maximum size δ of the neighborhoods.

The above formulation of locality emerges from realistic distributed systems. A popular example
for distributed data structure is “distributed object location” [3], the basic service provided by
distributed hash tables (DHTs), where a set of objects is distributed among nodes, and upon a
query of an object, the node that contains the queried object is located. In order to deal with the
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churn of nodes, the above functionality is always reduced to the nearest neighbor search problem
by mapping all nodes and objects into a metric space, and allocating each object to its closest
nodes. Most existing systems (e.g. [2, 21, 22, 24]) assume a one-dimensional metric, and there are
also distributed data structures that assume metrics with bounded growth rate1 ( [12,15]).

In the above examples, in comparison with the cell-probe mode, there exist several levels of
locality: first, for each instance of data, a communication network does exist, such that each node
is adjacent to bounded number of other nodes; second, probes to the cells have to be adjacent to
some of the previous probes in the underlying network; and third, the most important, every query
result can be verified locally by some node. In this paper, we only consider the locality of the third
kind, because (1) it shows a more data structural favor than graph theoretical favor, and (2) as
we will show, it is fundamental to the power of the data structures. The locally checkable data
structures are the data structures satisfying this kind of locality requirement.

It is easy to understand the concept of local verifications in data structures by thinking about
the query algorithm in a distributed data structure as walking in a network of nodes, looking for
the certificate for the query, namely, the information used by the algorithm to decide the query
result. The locally checkable data structure requires that for every query there is a certificate
locally accessible from some node.

Such a notion of locality is essential for the distributed systems that the status of the system
constantly changes, while the query results has to be consistent with the current status of the
system. This is the situation in almost all large-scale distributed systems. In such systems, in
order to guarantee that the computation of the query result is not disrupted by the status updates,
a certificate of the query should be quickly accessible from some node, i.e. should be within the
neighborhood of that node.

The locality of the certificates has been widely assumed in the existing upper bounds for
distributed data structures. In some cases the assumption is implicitly dealt with, such as in
[2, 21, 22, 24], where the problem is NNS in a ring, therefore for each query, its predecessor and
successor in the ring serve as a local certificate. For the case of NNS in a growth-restricted metric,
in the distributed implementation of [15] by Chord [22], the bounded size finger lists serve as local
certificates as argued in [15]. The term of certificate was explicitly mentioned in [12], and in their
distributed implementation, Tapestry [24], the locality of certificates is also guaranteed.

For some hard problems, such as NNS and partial match in a high dimensional Hamming cube
[13,14], or polynomial evaluation [19], it is still widely open whether there exist data structures that
have local certificates, even if we allow the running time of the query algorithm to be unbounded.
For high dimensional NNS, this problem is especially interesting because a recent result [1] shows
a tradeoff between load balance and the dimension of the metric space when allocating objects
to closest nodes and high dimensional Hamming cube indeed has optimal load balance. However,
existing lower bounds for these problems [4,6,7,14,19] do not apply to our model because none of
them addresses the requirement of locality.

Motivated by the exciting progress in the upper bounds of distributed data structures, which all
use local verifications effectively to meet realistic concerns, we are also curious about lower bound
side of the story. In particular, we want to explore the power of locally checkable data structures,
we want to characterize the problems that can be solved efficiently by such data structures, and
finally, we want to know for the open problems such as NNS in high dimension, whether there
exists an efficient locally checkable data structure.

1Formally, the metric space has bounded KR-dimension, a counting measure of doubling dimension.
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1.1 Our results

We introduce a notion of locality into the cell-probe model by introducing a concept of locally
checkable data structures, which addresses the locality of verifications in distributed data structures.

We introduce cell-probe proofs, an interactive proof system in the cell-probe model. This
notion of proofs formulates verifications instead of computations in the cell-probe model. We
discuss the connection between cell-probe proofs and locally checkable data structures. Unlike the
fully adaptive computations in the cell-probe model, the formulation of cell-probe proofs shows
a combinatorial simplicity. We introduce a combinatorial structure that fully characterizes the
problems that have cell-probe proofs with certain parameters.

With these novel tools, we prove two lower bounds on the data structures due to the requirement
of locality:

• There do not exist locally checkable data structures for exact nearest neighbor search (NNS)
problem or partial match problem in high dimensional Hamming space, under the assumption
that there are Poly(n) nodes, each of which contains no(1) bits, and each node has a no(1)-size
neighborhood, where n is the number of points in the data set for NNS or partial match
problem.

• There do not exist locally checkable data structures for polynomial evaluation problem defined
on (d − 1)-degree polynomials over finite filed 2k, under the assumption that there are s
nodes, each of which contains b bits, and each node has a δ-size neighborhood, such that
δ(b + log s) < k(d− 1)− log k and sδ(b + log s) < k2k.

2 Model

A static data structure problem or just data structure problem, is represented as a boolean
function f : X × Y → {0, 1}. In order to prove lower bounds, we only consider the decision
problems. We refer to each y ∈ Y as an instance of data and each x ∈ X as a query. For each
pair of x and y, f(x, y) specifies the result of the query x to the data structure that represents the
data y.

In the cell-probe model (c.f. [9,11,23]), the data instance y is preprocessed and stored in cells, and
for each query x, the value of f(x, y) is decided by adaptive probes to the cells. Formally, a cell-probe
scheme consists of a table structure and a query algorithm. The table structure T : Y ×I → {0, 1}b

specifies a table Ty : I → {0, 1}b for each data instance y, which maps indices of cells to their
contents. Upon each query x, the query algorithm makes a sequence of probes i1, i2, . . . to the cells,
where ik depends on x and all previous cell probes 〈i1, Ty(i1)〉, 〈i2, Ty(i2)〉, . . . , 〈ik−1, Ty(ik−1)〉. The
value of f(x, y) is decided at last based on the collected information.

In a distributed data structure, where each cell corresponds to a node in the distributed system,
for each data instance y, in addition to the table of cells, an underlying network Gy(I, Ey) is also
constructed, which is an undirected graph whose vertex set is the set of cells. We suppose that
from any node, the nodes less than ` distant from it are its local nodes, so that for each network
Gy, a structure of neighborhoods is given as ∆y : I → 2I , that for every node i ∈ I, the set of
all local nodes to i is ∆y(i) = {j ∈ I | dy(i, j) < `} where dy(i, j) denotes the distance between i
and j in Gy. We use the maximum size of a neighborhood δ = maxy,i |∆y(i)| to parameterize the
degree of locality. Intuitively, ∆y(i) is the set of nodes that are quickly accessible from node i in
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the network Gy, and δ is the upper bound on the number of such nodes. In most realistic systems,
it holds that δ = so(1) for a system with s nodes.

A locally checkable data structure is a cell-probe scheme such that for every instance of
data y, there exists a structure of neighborhoods {∆y(i)}i for cells, such that for each query x, the
value of f(x, y) is checkable within some neighborhood ∆y(i). It is formally defined as follow.

Definition 1 For a cell-probe scheme, we denote its table structure as T : Y × I → {0, 1}b, and
let Sxy denote the set of cells probed by the query algorithm upon query x to data y.

We say the cell-probe scheme is δ-local, if there exists a neighborhood structure ∆ : Y ×I → 2I ,
such that maxy,i |∆y(i)| = δ and for every x and y, there is some subset P ⊆ Sxy of probed cells,
such that P ⊆ ∆y(i) for some i ∈ I, and for all such y′ ∈ Y that ∀j ∈ P, Ty′(j) = Ty(j), it holds
that f(x, y′) = f(x, y).

Intuitively, the cells in P contains the necessary information that decides the value of f(x, y),
and a δ-local cell-probe scheme requires that such information is always local to some cell.

In order to formally characterize the local verifiability of data structures, we introduce a new
concept, cell-probe proofs, which formalizes the proofs and verifications in the cell-probe model.
With the help of cell-probe proofs, we have a much simpler definition of locally checkable data
structures.

2.1 Cell-probe proofs

For a specific data structure problem f , a cell-probe proof system (CPP) may be subsequently
defined for f .

We can think of a cell-probe proof system as a game played between an honest verifier and an
untrusted prover. Both of them have unlimited computational power. Given an instance of data,
a table of cells is honestly constructed according to the rules known to both prover and verifier.
Both the prover and the verifier know the query, but only the prover can observe the whole table
and thus knows the data. The prover tries to convince the verifier about the result of the query to
the data by revealing certain cells. After observing the revealed cells, the verifier either decides the
correct answer, or rejects the proof, but can not be tricked by the prover into returning a wrong
answer.

Formally, a cell-probe proof system (CPP) consists of three parts:

• A table structure T : Y × I → {0, 1}b. For any data y, a table Ty : I → {0, 1}b is a mapping
from indices of cells to their contents.

• A prover P . For every x and y, Pxy ⊆ I is a set of cells. We refer to Pxy as a proof and
{〈i, Ty(i)〉 | i ∈ Pxy} as a certificate.

• A verifier v, who maps the queries with the certificates to the answers {0, 1,⊥}. Given an
instance of data y, for any query x, both of the following conditions hold:

(Completeness) ∃P ⊆ I : v(x, {〈i, Ty(i)〉 | i ∈ P}) = f(x, y), and

(Soundness) ∀P ⊆ I : v(x, {〈i, Ty(i)〉 | i ∈ P}) =

{
f(x, y)
⊥ .

A (s, b, t)-CPP is a CPP such that for every x and y: (1) the table has s cells, i.e. |I| = s; (2)
each cell contains b bits; (3) each proof consists of t cell probes, i.e. |Pxy| = t.
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Example: For the membership problem [23], where X = [m] and Y =
([m]

n

)
, and f(x, y) = 1 if

and only if x ∈ y, a naive construction shows a 2-cell proof: with a sorted table storing y, if x ∈ y,
the proof is the cell that contains x, if x 6∈ y, the proof consists of two consecutive cells which are
the predecessor and successor of x. The same CPP also works for predecessor search [5].

Note that although a data structure problem is nothing but a boolean function, CPP is very
different from the certificate complexity of boolean functions [8]. In CPP, the prover and the
verifier communicate with each other via a table structure, which distinguishes CPP with the
standard certificate complexity. For any data structure problem, the table structure can always
store the results for all queries, making one cell-probe sufficient to prove the result, which is quite
impossible in the model of certificate complexity.

We can alternatively interpret cell-probe proofs as nondeterministic cell probes. Naturally, for
a cell-probe scheme, for any query, the cells probed by the algorithm contains a cell-probe proof,
which provides the necessary information to answer the query. For a cell-probe scheme, let Sxy

denote the set of cells probed by the query algorithm upon query x to data y. We say a cell-probe
scheme contain a CPP, if they have the same table structure and for every x and y, the proof
Pxy ⊆ Sxy.

We can therefore have an alternative definition for the locally checkable data structures.

Definition 2 A cell-probe scheme is δ-local if it contains a CPP and there exists a neighborhood
structure ∆ : Y × I → 2I , such that maxy,i |∆y(i)| = δ and for every x and y, the proof given by
the CPP Pxy ⊆ ∆y(i) for some i.

The equivalence of Definition 1 and Definition 2 directly follows the definition of CPP.
According to Definition 2, a δ-local cell-probe scheme with s cells each of b bits implies a

(s, b, δ)-CPP. The following lemma further reduce it to 1-cell proofs, which are essential for our
analysis.

Lemma 3 For any data structure problem f , if there exists a δ-local cell-probe scheme with s cells
each of b bits, then there exists a (s, δ(b + log s), 1)-CPP for f .

Proof: Assuming that for the δ-local cell-probe scheme, the structure of neighborhood for
each y is {∆y(i)}i, and the table structure is T : Y × [s] → {0, 1}b, we define a new table structure
T ′ : Y × [s] → {0, 1}δ(b+log s) by letting T ′

y(i) = {〈j, Ty(j)〉 | j ∈ ∆y(i)}, i.e. we store all the cells in
each ∆y(i) along with their indices as a new cell. Because the new table T ′

y store both the contents
and indices of cells of the old table Ty, probes to Ty can be simulated by probes to T ′

y. According
to the definition of δ-local cell-probe schemes, for every x and y, a cell-probe proof is contained by
some ∆y(i) in the old table Ty, therefore in the new table T ′

y, for every x and y, a cell-probe proof
is contained in a cell, which implies a (s, δ(b + log s), 1)-CPP.

3 Characterization of CPPs

We now introduce a combinatorial characterization of CPP. Given a set system F ⊆ 2Y , for any
y ∈ Y , we let F(y) = {F ∈ F | y ∈ F}. For convenience, for a partition P of Y , we abuse this
notation and let P(y) denote the set F ∈ P that y ∈ F .
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Definition 4 We say a set system F ⊆ 2Y is a s× k-partition of Y , if F is a union of s number
of partitions of Y , where the cardinality of each partition is at most k.

This particular notion of partitions of Y fully captures the existence of cell-probe proofs. We
start with the case for 1-cell proofs.

Theorem 5 There is a (s, b, 1)-CPP for f : X × Y → {0, 1}, if and only if there exists a s × 2b-
partition F of Y , such that for every x ∈ X and every y ∈ Y , there is a F ∈ F(y) that |f(x, F )| = 1.

Proof: (=⇒) Given a table structure T : Y ×I → {0, 1}b, define the map of the table structure
as a s× 2b matrix A such that Aij = {y ∈ Y | Ty(i) = j}, i.e. Aij is the set of such data set y that
the content of the i’s cell of the table storing y is j. It is clear that each row i of A is a partition of
Y with at most 2b partition sets, because each data set y has one and only one value of Ty(i), and
there are at most 2b possible values for a cell, therefore the matrix A is a s× 2b-partition F of Y ,
where each Aij is a F ∈ F .

If there is a (s, b, 1)-CPP of f , due to the completeness of CPP, for every x ∈ X and every
y ∈ Y , there exists a cell i that 〈i, j〉 becomes the certificate where j = Ty(i), and due to the
soundness of CPP, there must not be any other y′ ∈ Y such that Ty′(i) = j and f(x, y′) 6= f(x, y).
Note that by definition of A, Aij contains all y′ such that Ty′(i) = j, thus |f(x,Aij)| = 1.

(⇐=) Assuming that F is a s × 2b-partition of Y such that for every x and every y there is a
F ∈ F(y) that |f(x, F )| = 1, we rewrite F in the form of a s× 2b matrix A that Aij is the F ∈ F
which is indexed as the jth partition set in the ith partition. We can define our table structure
T : Y × I → {0, 1}b in the way that Ty(i) is assigned with the unique j that y ∈ Aij . Because each
row of A is a partition of Y , such T is well-defined.

For every x ∈ X and every y ∈ Y , there is a F ∈ F(y) that |f(x, F )| = 1, i.e. there is a Aij 3 y
that |f(x,Aij)| = 1, then we use 〈i, j〉 as the certificate. Since for every x and y, there exists such
i, the proof is complete, and since f(x, ·) is constant on such Aij , the proof is sound.

Let Y x
0 = {y ∈ Y | f(x, y) = 0} and Y x

1 = {y ∈ Y | f(x, y) = 1}. An alternative characterization
is that there is a (s, b, 1)-CPP for a problem f : X ×Y → {0, 1}, if and only if there exists a s× 2b-
partition of Y , such that {Y x

0 , Y x
1 }x∈X is contained by the union-closure of F . Note that this

statement is equivalent to the statement in Theorem 5, so we state it without proof. With this
formulation, we get some intuition about 1-cell proofs, that is, a problem f : X × Y → {0, 1} has
simple proofs, if and only if there exists some set system F ⊆ 2Y with a simple structure, such that
the complexity of F reaches the complexity of the problem.

4 Nearest neighbor search

We consider the decision version of nearest neighbor search, λ-near neighbor (λ-NN), in a high
dimensional Hamming cube {0, 1}d, that X = {0, 1}d, Y =

({0,1}d

n

)
and f(x, y) ∈ {0, 1} answers

whether there exists a point in y within distance λ from the x. As in [4, 7], we assume that
d = ω(log n) ∩ no(1) to make the problem non-trivial.

We prove that with the above setting, there does not exists (Poly(n), no(1), 1)-CPP for λ-NN
problem, which according to Lemma 3, implies that there does not exist practical locally checkable
data structures for NNS in high dimensional space. To show this, we show the same lower bound
for the partial match problem [13, 14], which is an instantiation of the λ-NN problem as shown
in [7].
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The partial match problem is defined as follow: The domain is a Hamming cube {0, 1}d, where
d = ω(log n)∩no(1), and each data instance y is a set of n points from the domain, i.e. Y =

({0,1}d

n

)
.

The set of queries X = {0, 1, ∗}d. Given a data instance y ∈
({0,1}d

n

)
and a query x ∈ {0, 1, ∗}d,

f(x, y) = 1 if and only if there is a z ∈ y such that z matches x except for the bits assigned with
“∗”.

Theorem 6 There is no (s, b, 1)-CPP for the partial match problem, if s = Poly(n) and b = no(1).

Proof: We denote the problem as f . From the characterization of (s, b, 1)-CPP given in
Theorem 5, it is sufficient to show that for any s×2b partition F of Y , there exist x ∈ X and y ∈ Y
such that for all F ∈ F(y), |f(x, F )| = 2. We prove this with probabilistic method. With some
distribution of x and y, we show that for all s×2b partition F of Y , Pr[∀F ∈ F(y), |f(x, F )| = 2] > 0.

For the rest of the proof, we assume that y is uniformly selected from Y , and x is generated by
uniformly choosing r = 2 log n bits and fixing each of them uniformly and independently at random
with 0 or 1, and setting the other bits to “∗”.

We then prove two supporting lemmas. Recall that for a partition P of Y , P(y) denotes the
set F ∈ P that y ∈ F .

Lemma 7 For any partition P of Y , if |P| ≤ 2b, where b = no(1), then

Pr
y

[
|P(y)| ≤

(
2d

n

)/
2nΩ(1)

]
≤ n−ω(1).

Proof: We let P = {F1, F2, . . . , Fk} where k ≤ 2b, and let pi = |Fi|/|Y |. Because P is a
partition of Y , we know that

∑
i pi = 1. We define a random variable Z = |P(y)|/|Y |. Since y is

picked uniformly at random from Y , it holds that Z = pi with probability pi. Since there are at
most 2b different P(y), by union bound,

Pr
y

[
|P(y)| ≤

(
2d

n

)/
2nΩ(1)

]
≤ 2b Pr

[
Z = pi where pi ≤ 2−nΩ(1)

]
= 2b−nΩ(1)

= n−ω(1).

For simplicity, we generalize the notation of f to arbitrary point set A ⊆ {0, 1}d, where f(x,A)
is conventionally defined to indicate whether there is a z ∈ A that matches x

Lemma 8 For any A ⊆ {0, 1}d, if |A| > (1− 2−k)2d for k = 1
2 log n, then

Pr
x

[f(x,A) = 0] ≤ n−ω(1).

Proof: We let B = {0, 1}d \A be the complement of A in the d-dimensional cube. Note that
|B| < 2d−k. According to our definition of the distribution of x, x is in fact a random (d − r)-
dimensional subcube in {0, 1}d, and f(x, A) = 0 only if the cube specified by x is contained by B.
This chance is maximized when B itself is a cube, thus without loss of generality, we can assume
that B is the set of z ∈ {0, 1}d whose first k bits are “1”s. Therefore,

Pr
x

[f(x,A) = 0] ≤ Pr
x

[x’s first k bits are “1”s] ≤
(d−k
r−k

)(d
r

) ≤
(

r

d

)k

= n−ω(1).
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We then prove that for all s×2b partition F of Y , the probability Pr[∃F ∈ F(y), f(x, F ) = {1}]
and Pr[∃F ∈ F(y), f(x, F ) = {0}] are both very small.

For any F ∈ F(y), we have y ∈ F , thus ∃F ∈ F(y), f(x, F ) = {1} implies that f(x, y) = 1,
therefore for an arbitrary s× 2b partition F of Y ,

Pr
x,y

[∃F ∈ F(y), f(x, F ) = {1}] ≤ Pr
x,y

[f(x, y) = 1] ≤ Pr
x,y

[∃z ∈ y, x matches z] ≤ n · 2−r = o(1).

To bound the probability Pr[∃F ∈ F(y), f(x, F ) = {0}], we observe that each s× 2b partition F is
just a union of s many partitions of Y , each of which is with cardinality at most 2b, therefore, by
union bounds, it holds that

Pr
x,y

[∃F ∈ F(y), f(x, F ) = {0}] ≤ s · Pr
x,y

[f(x,P(y)) = {0}]. (1)

for some partition P of Y where |P| ≤ 2b. It is then sufficient to show that for arbitrary such
partition P, the probability Pr[f(x,P(y)) = {0}] is very small.

We choose a threshold k = 1
2 log n, and separate the case that |P(y)| ≤

((1−2−k)2d

n

)
and the case

that |P(y)| >
((1−2−k)2d

n

)
. According to Lemma 7, for any partition P of Y with |P| ≤ 2b, the

probability that |P(y)| ≤
((1−2−k)2d

n

)
=
(2d

n

)
/2nΩ(1)

is at most n−ω(1).
We let A =

⋃
P(y) =

⋃
y′∈P(y) y′. Note that A ⊆ {0, 1}d, and f(x,P(y)) = {0} implies

that f(x,A) = 0. For such P(y) that |P(y)| >
((1−2−k)2d

n

)
, by pigeonhole principle, it holds that

|A| ≥ (1 − 2−k)2d. Due to Lemma 8, f(x,A) = 0 with prohibitively small probability. Putting
them together, it holds for arbitrary partition P of Y with |P| ≤ 2b that

Pr
x,y

[f(x,P(y)) = {0}] ≤ Pr
y

[
|P(y)| ≤

(
(1− 2−k)2d

n

)]

+Pr
x,y

[
f(x,P(y)) = {0}

∣∣∣∣ |P(y)| >
(

(1− 2−k)2d

n

)]
≤ n−ω(1) + Pr

x

[
f(x,A) = 0

∣∣∣ A ⊆ {0, 1}d and |A| > (1− 2−k)2d
]

≤ n−ω(1).

Combining with (1), we have that

Pr
x,y

[∃F ∈ F(y), f(x, F ) = {0}] ≤ s · n−ω(1) = o(1).

Therefore, for arbitrary s× 2b partition F of Y , it holds that

Pr
x,y

[∀F ∈ F(y), |f(x, F )| = 2] ≥ 1− Pr
x,y

[∃F ∈ F(y), f(x, F ) = {1}]− Pr
x,y

[∃F ∈ F(y), f(x, F ) = {0}]

≥ 1− o(1).

It follows that for any s× 2b partition F of Y , where s = Poly(n) and b = no(1), there exist x ∈ X
and y ∈ Y such that for every F ∈ F(y), it holds that |f(x, F )| = 2. By Theorem 5, there is no
(s, b, 1)-CPP for f with the above range of s and b.

In [7], it is shown that the partial match problem can be reduced to the λ-NN problem. Because
the reduction only involves mapping between instances of problems, the existence of an (s, b, 1)-CPP

8
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for λ-NN implies the existence of a CPP for partial match with essentially the same parameters.
The following corollary is implied.

Corollary 9 There does not exist (Poly(n), no(1), 1)-CPP for the nearest neighbor search problem
with n points in d-dimensional Hamming space where d = ω(log n) ∩ no(1).

Due to Lemma 3, the following lower bound holds for locally checkable data structures.

Corollary 10 There does not exist an no(1)-local cell-probe scheme with Poly(n) cells each of no(1)

bits, for the nearest neighbor search or partial match problem with n points in d-dimensional Ham-
ming space where d = ω(log n) ∩ no(1).

5 Polynomial evaluation

Let 2k be a finite field. Let Y = 2kd be the set of all polynomials of degree ≤ (d− 1) over the finite
field 2k. Throughout this section, we assume that d ≤ 2k.

Let X = 22k be the set of all pairs of elements of the finite field 2k. A decision version of
the polynomial evaluation problem f is defined as: for every query (x, z) ∈ X and every data
instance g ∈ Y , f((x, z), g) = 1 if g(x) = z and f((x, z), g) = 0 if otherwise, i.e. a polynomial g
is preprocessed and stored as a data structure, so that on each query (x, z), the data structure
answers whether g(x) = z.

There are two naive upper bounds for one-cell proofs:

1. A (1, kd, 1)-CPP: store the whole polynomial in a single cell, and on each query, one probe
reveal the whole polynomial;

2. A (2k, k, 1)-CPP: each cell corresponds to an input x, and the cell stores the value of g(x),
thus on each query (x, z), one probe to the cell corresponding to x answers whether g(x) = z.

We are going to prove that the above naive upper bounds are essentially optimal. We show
that for any (s, b, 1)-CPP, either b is close to large enough to store a whole polynomial as in (1), or
the total storage size s · b is exactly as large as in (2).

We first prove two lemmas. For any subset P ⊆ Y , let τ(P ) = |{x ∈ 2k | ∀g1, g2 ∈ P, g1(x) =
g2(x)}|, which represents the number of such assignments of x that all polynomials in P yield the
same outcome. It is trivial to see that for |P | ≤ 1, τ(P ) = 2k.

Lemma 11 If |P | > 1, it holds that

τ(P ) ≤ d− log |P |
k

.

Proof: We write τ(P ) briefly as τ . Let x1, x2, . . . , xτ be such that all polynomials in P yield
the same outcomes. We arbitrarily pick other xτ , xτ+1, . . . , xd. For any two different polynomials
g1, g2 ∈ P , it can never hold that g1(xi) = g2(xi) for all i = τ, τ +1, . . . , d, since if otherwise, g1 ≡ g2

by interpolation. Recall that g is a polynomial of the finite field 2k, thus for an arbitrary g ∈ P
and an arbitrary x, there are at most 2k possible values for g(x). Therefore, due to Pigeonhole
Principle, in order to guarantee that no two polynomials in P agree on all xτ , xτ+1, . . . , xd, it must
hold that 2k(d−τ) ≥ |P |, i.e. τ(P ) ≤ d− log |P |

k .

9
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Lemma 12 Given a partition P of Y , let g be a uniformly random polynomial in Y . E{τ(P(g))}
represents the expected number of the input xs that all polynomials in the partition block P(g) yield
the same outcome, where the expectation is taken over random g. For any partition P of Y that
|P| ≤ 2b and b < k(d− 1)− log k, it holds that

E{τ(P(g))} ≤ b

k
.

Proof: Let P1, P2, . . . , P2b denote the partition blocks, and let q1, q2, . . . , q2b be the respective
cardinalities. Naturally we have that

∑2b

i=1 qi = 2kd. We assume that qi = 0 for i = 1, 2, . . . ,m0,
qi = 1 for i = m0 + 1,m0 + 2, . . . ,m, and qi > 1 for i > m. For those Pi that i ≤ m, |Pi| = qi ≤ 1,
thus τ(Pi) = 2k. According to Lemma 11,

E{τ(P(g))} =
2b∑

i=1

qi

2kd
τ(Pi) ≤ (m−m0) ·

2k

2kd
+

2b−m∑
i=1

qi

2kd
(d− log qi

k
),

which due to Lagrange multiplier, is ≤ m−m0

2k(d−1) + 2kd−m
2kd (d− log(2kd−m)−log(2b−m)

k ), which is maximized
when m = m0 = 0 if b < k(d− 1)− log k, i.e. E{τ(P(g))} ≤ b

k .

With the above lemmas, we can prove the following theorem.

Theorem 13 For any (s, b, 1)-CPP for the polynomial evaluation problem with parameters k and
d where d ≤ 2k, either b ≥ k(d− 1)− log k or s · b ≥ k · 2k.

Proof: We will prove that there does not exist (s, b, 1)-CPP for the polynomial evaluation
problem if b < k(d− 1)− log k and s · b < k · 2k.

Let x be a uniformly random element of 2k, and let g be a uniformly random polynomial from
Y . For any partition P of Y that |P| ≤ 2b, according to Lemma 12,

Pr
x,g

[∀g1, g2 ∈ P(g), g1(x) = g2(x)] =
1
2k

E{τ(P(g))} ≤ b

k2k
.

Therefore, for any s× 2b partition F of Y , it holds that,

Pr
x,g

[∃F ∈ F(g) s.t. ∀g1, g2 ∈ F, g1(x) = g2(x)] ≤ s · Pr
x,g

[∀g1, g2 ∈ P(g), g1(x) = g2(x)] ≤ s · b
k2k

< 1,

where the first inequality is due to the observation that F is a union of s instances of 2b-partitions
of Y . Therefore, for any s× 2b partition F of Y ,

Pr
x,g

[∀F ∈ F(g)∃g1, g2 ∈ F, g1(x) 6= g2(x)] > 0.

By probabilistic methods, we know that for any s×2b partition F of Y , there exists some (x, z) ∈ X
and some g ∈ Y that g(x) = z, but for all F ∈ F(g), there exists h ∈ F such that h(x) 6= z.

According to Theorem 5, we know that there does not exist (s, b, 1)-CPP with the given range
of s and b.

Due to Lemma 3, the following lower bound holds for locally checkable data structures.

Corollary 14 There does not exist a δ-local cell-probe scheme with s cells, each of which contains
b bits, for the polynomial evaluation problem with parameter k and d where d ≤ 2k, if (b + log s) <
k(d− 1)− log k and sδ(b + log s) < k2k.

10



www.manaraa.com

6 Acknowledgment

I would like to thank James Aspnes for the helpful discussion, and thank Dana Angluin for her
comments on the early version of the paper.

References

[1] J. Aspnes, M. Safra, and Y. Yin. Ranged hash functions and the price of churn. To appear in
SODA 2008.

[2] J. Aspnes and G. Shah. Skip graphs. Proceedings of the fourteenth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA 2003), pages 384–393, 2003.

[3] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up data in P2P
systems. Communications of the ACM, 46(2):43–48, 2003.

[4] O. Barkol and Y. Rabani. Tighter bounds for nearest neighbor search and related problems
in the cell probe model. Proceedings of the thirty-second annual ACM Symposium on Theory
of Computing (STOC 1999), pages 388–396, 1999.

[5] P. Beame and F. Fich. Optimal bounds for the predecessor problem. Proceedings of the
thirty-first annual ACM Symposium on Theory of Computing (STOC 1999), pages 295–304,
1999.

[6] P. Beame and E. Vee. Time-space tradeoffs, multiparty communication complexity, and
nearest-neighbor problems. Proceedings of the 34th annual ACM Symposium on Theory of
Computing (STOC 2002), pages 688–697, 2002.

[7] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional nearest neighbor
search and related problems. Proceedings of the thirty-first annual ACM Symposium on Theory
of Computing (STOC 1999), pages 312–321, 1999.

[8] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288(1):21–43, 2002.
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